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4. An experiment was carried out with the view to determining the difference in the 
amplitude of signals produced by waves propagating up- and downward in a medium. 

Short pulse signals (10 -20 and 60 - 80 nsec)were simultaneously applied to the two two- 
meter long aluminum rods fixed in the same manner and insulated by brass tubes. Pulses of an 
amplitude of 1-2 V were supplied to piezoelectric transducers attached to rod ends and 

completely insulated. Signals were fed to the bottom of one rod and to the top of the 
other. For maximum attenuation of wave reflection the rod ends were damped by rubber. 
The amplitude of the output signal was of the order of 0.5 - 1.5 mV. 

This experiment had shown that when the acoustic wave propagates upward, the ampli- 
tude of output voltage was 1.2 - 1.5 mV, while in the case of wave propagating down- 
ward this amplitude was 0.4 - 0.5 mV. The results of derived solutions were thus quali- 
tatively confirmed. It is interesting to note that the accuracy of this experiment was 
sufficient for demonstrating the investigated phenomenon in spite of the small length of 

the rod. 
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The method of simplifying systems of equations with small nonlinearities and dis- 

persion is considered. Such systems differ from the linear hyperbolic system by a 
certain integro-differential operator with a small parameter. Method is based on 
the reduction of input equations to the normal form and subsequent recurrent pro- 
cedure. In the case of a wave propagating along one of the characteristics of the 

system (single-wave processes) the first approximation by this method leads to 
known Burgers, Korteweg-de Vries, Klein-Gordon, and others equations which were 
first derived for specific physical models, and later for a more general system of 
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nonlinear equations [ 1, 21. However the proposed method can be applied to 
multi-wave interaction, when waves corresponding to two or more characteristics 

of the system are taken into consideration. It is also shown that in the case of 

single-, as well as multi-wave processes the order of sihplified equations increa- 
ses with the order of approximation, and the increase is different for systems with 

high and low dispersion frequencies (when the small parameter is contained in 
terms with higher derivatives or those containing integrals of the unknown func- 
tion, respectively). 

Let us consider a system of the form 

duldt+B(r,p)Vu =&F {U} 

(.t = r0 + Et, p = p. + Er, E < 1) 

(1) 

where u is the fl -dimensional vector of field variables, B = {B,, B,, B,} is the 
set of three square matrices, $’ are specified, generally nonlinear integro-differential 
operators in terms of r and t which depend on E, z and p. We assume that all eigen- 
values of matrix B are real, i.e. that for E = 0 system (1) is hyperbolic (it will be- 

come clear subsequently that this condition need not necessarily be satisfied, since only 
the existence of r < N real characterisitcs of system (1) is necessary when E = 0). 

For E = 0 the solution of system (1) is of the form of plane waves 

u = U. $- -+U (t - Vr I V2) (2) 

where U, and U are arbitrary constant vector and scalar function, respectively, which 
are determined by boundary and initial conditions, and -I# is the right-hand eigenvector 
of matrix B, which corresponds to the eigenvalue of V 

VB21, = v2q1, Det 1 VB - V” 1 = 0 (3) 

To examine the more general class of quasi-plane waves propagating along the z -axis 

for E # 0 we reduce the input system (1) to the normal form (cf. [3]) by substituting 
the variables 

u = Yv (4) 

where Y is a square matrix composed of linearly independent eigenvectors of matrix 

B--B,. We obtain 

$ + h (z, p) $ + EC (z, p) vLv = &Y-l [F - (g + BVY) v] = ef (5) 

( C = Y-lBLY, B, = {B,, I?,}, 

where ?L is a diagonal matrix with elements 
matrix Y. 

Vl, * * .v, , and y-r is the inverse of 

The conversion to system (5) considerably simplifies the construction of the scheme 
of successive approximations with respect to parameter a. The unknown function, in 
accordance with (4) and (5) is a superposition of “almost traveling” waves, each of which 
propagates along one of the characterisitcs. Boundary or initial conditions are in a num- 
ber of cases such that for E = 0 only r ( N waves vi (z - Vi@ or even only one 
wave are induced in the medium. For example, in the case of a specified wave from 

region IL: < 0 impinging on the boundary of a semi-infinite medium (5 > 0) all 
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characteristics with IJ < 0 are excluded from the analysis in the first approximation. 

Another example is the problem with initial conditions in the form of localized pertur- 
bation which decomposes into pulses propagating along characteristics without overlap- 

ping, so that for reasonably long t each of these can be examined independently. It is 

possible to separate in similar cases r “principal” variables among components of vec- 
tor v and calculate the remaining iI_ - r components, which are small, by using the 
theory of perturbations. As the result in each (m- th) approximation with respect to the 

small parameter a Eqs. (5) are divided into two groups : r equations of the form 

+ + V,(lT, fl) 2 + E i Cij(T, p) VlUj = Efi (Vi, Uyel), F)‘- (6) 
i=1 

N 

E 2 C&,p)V,u,!m-l’ (i=l,..., 7.) 
s=r+1 

and N - r linear equations for u,crn) 

adm) a7P 
-+ + vs -& = &f, {Ui, Ip), E} - 

E ~ CsiVlUi-& ~ Cs*VIUlrn-" 

(7) 

It is evident that (7) asymptotically decomposes into N - r independent first order 
equations with known right-hand parts ; as the result the construction of the approximate 
system (6) reduces to iterations. We note that this scheme of derivation of simplified 
equations is simpler than that presented in [l, 21 even in the case of single wave prob- 

lem. 
Let us consider the structure of the right-hand side of (6). In the first approximation 

it is necessary to calculate function fi appearing there for e = 0, i.e. to set u, = 0. 
For a given r the order of first approximation equations is obviously dependent on the 

form of functional 8’ in the input system (1). In many important cases F can be pre- 
sented in the form of a sum of derivatives of integrals of certain functions of the unknown 
variable. A similar presentation of f is obviously possible. The first approximation 
equations are then of the form 

~ + Vi ~ + & ~ CijVIUj -t- . . . + F s I$” dz + Ehy + (8) 
i=l 

ah!‘) &Th(Z) ph!3) 
E-J-+&~++-&+...=0 ax 

where IL(~~) is a function of ui and all derivatives with respect to t are eliminated by 
using (6). In the simplest case only function h(r) is nonzero, which relates to a nondis- 
persive medium. If in addition to h(r) function IL(.~) (“viscosity”) or h(s) (high frequency 
dispersion) are nonzero and the latter are linear with respect to u and h(l) - u ‘, then 
for r = 1 the known Burgers and Korteweg-de Vries equations follow from (8). The h(o) 
term defines “low-frequency losses”. Finally, when function h(-1) is nonzero, then dif- 
ferentiating (8) with respect to t and eliminating #v/&r&, we obtain for r = 1 the 

Klein-Gordon equation. In the nonlinear wave theory each of these equations defines in 
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the single-wave approximation the simplest form of nonlinear, dispersion, and dissipative 
properties of a medium. It will be seen from (8) that similar equations can be written 

for any number of interacting waves. 
In subsequent approximations, e.g. in the m-th one, function f is calculated by known 

V, m-l to within zna-l .Since V, does not coincide with any of the Fi (owing to the 

hyperbolic properties of system (1)) V, is determined as an integral of the right-hand 
part of Eqs, (7). The substitution of u, into (6) shows that the order of system (6) increa- 
ses, generally speaking, in each approximation, although the increase differs depending 

on the form of functional F. 
Let initially F cu du / dz, then terms of the kind 

af 3% 
a (a~/a~) XT 

lead to the appearance in the second approximation of the term avi f 13x in (6). This 
also takes place in higher approximations. Hence for a nondispersing medium the order 

of system (6) does not increase. 
If F w d2v / 8x2, then in every approximation the order of system (6) increases by r 

and because of aj a?v, 
a (a”V/dX2) dz2 

terms a3u / ds3 appear in the second approximation, and so on. Corrections of this kind 

to the Burgers equation in acoustics were obtained in [4]. The term with d3v / dx3 in- 

creases the order by 2 r , and so on. 

If, however, F cu v, then we obtain in the second approximation j vdx ) and integ- 
rals of increasing multiplicity appear with increasing approximation order. This also 

relates to all cases, when F contains integrals of u (for F CSI f vdx the multiplici~ 
of integrals increases by 2r and so on). Thus the increase of the order of approximate 

equations for systems with high- and low-frequency dispersion (dissipation) is not the 
same. While in the first case the order of derivatives increases, in the second it is the 
multiplicity of integrals. The “border-line” case is that of the nondispersing medium, 
when the small parameter at the first approximations in (1) and the order of system (6) 
do not vary in any approximation. 

Finally, because of the presence of CfsV~us a term of the kind Alpdx, which is re- 
lated to the diffusion approximation for paraxial nonsinusoidal beams (first investigated 
in acoustics [5]), appears in (6). 

We also note that power of nonlinear terms increases, as usual, with the order of appro- 
ximation. 

We note in conclusion that the transformation of the input system to approximate equa- 
tions (6) often simplifies the choice of optimum methods of their solution. Thus, if in the 
first approximation the solution of (6) is in the form of a set of stationary waves, methods 
of averaging may be applied in the subsequent approximation [6, 71. 

The authors express their appreciation to A, V. Gaponov anf L. G. Khazin for useful 
comments. 
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The problem of impression of a stamp with narrow rectangular base into an 

elastic isotropic half-space under the effect of a vertical force is considered. 
This problem has been studied in [l, 21. Asymptotic properties of the integral 
equation obtained, which goes over into a singular integral in the limit as the 
beam width diminishes permitting substantiation of the known Zimmerman- 
Winkler hypothesis, were established in [l]. An approximate solution of the in- 
tegral equation from [l] was given in [2]. A brief survey of the research devo- 
ted to the problem of impressing a rectangular stamp is contained in [2, 31. A 
more complete method of solving this problem is proposed below. 

1. Let us consider a stamp in the shape of a narrow rectangle of length 2a and width 
26, where a = 6 / a 4~ 1. kt a vertical force P impress this stamp into an elastic 

isotropic half-space z > 0. The force P passes through the center of gravity of the 
stamp and is directed along the z-axis. 

Applying a two-dimensional Fourier integral transform to the Lame’ equilibrium equa- 
tions in rectangular xyz coordinates, we find 

w (2, y, 0) = - 7 \ \ (a2 + p2)-“; ai* (a, p, 0) ewi ‘ax+Plr) da dj3 (1.1) . . 

Here E, v are the Young’s modulus and the Poisson’s ratio of the material of the elas- 
tic half-space, respectively, w is the projection of the displacement vector on the z - 
axis, oz ** is the two-dimensional Fourier tranform of the normal stress oz. Formula(l.1) 
is valid under the condition of no shear stresses on the half-space boundary (at z = 0) . 
This formula establishes the connection between vertical displacements of the half-space 


